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functions for the product of Laguerre polynomials: the
thermal average bandshape function of a molecule
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091, India

Received 20 July 1999

Abstract. We introduce two different forms of mathematical identities, involving the product of
Laguerre polynomials. These identities are a direct reflection of an operator identity. It is shown
that these relations are useful in calculating the thermal average bandshape function of a molecular
system. For a model displaced-oscillator system we derive how the displacement between two
adiabatic potential surfaces affects the bandshape function.

In this work we present an operator approach to construct some new identities involving the
product of Laguerre polynomials. The derivation came from a physical argument for the
multiphoton transition between different adiabatic electronic states (see, for example, [1]) of
a molecule. The adaiabatic potentials are treated as harmonic oscillators but they may be
displaced and the frequency parameters can also change. In our recent work we calculated an
exact expression for the Franck–Condon factor for multiphoton processes in a molecule [2]. In
this letter we generalize our approach to work on a quantum open system by introducing some
identities of nonunitary operators and thereby construct new mathematical identities involving
Laguerre polynomials.

Recently, femtosecond time-resolved spectroscopy [3] has become very popular in
elucidating the fast dynamics of molecular vibration and rotation. In this letter we have
calculated a useful quantity, i.e. the thermal average bandshape function of a molecule. The
molecule is modelled by Born–Oppenheimer adiabatic potential surfaces of electronic states
[4]. We consider that the potential surfaces are displaced harmonic oscillators. For example,
in a time-resolved absorption experiment, we assume the system is in the vibronic manifold
{a, v} in thermal equilibrium and a short-pulse laser excites the system to a vibronic manifold
{b, u}. Our aim here is to calculate the thermal average bandshape function. For short-time
approximation the expression we have derived is amenable to classical interpretation of the
bandshape function, as is usually done in the coherent state description [5, 6] of a quantum
system.

In what follows we present the operator identities and their relation with the generating
functions of the product of the Laguerre polynomials. First, we introduce a nonunitary
displacement operator where the number of parameters is doubled with respect to the coherent
state displacement operator [6] of a harmonic oscillator. Say,

D = eXa
†−Ya (1)
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where [a, a†] = 1, corresponds to boson algebra withX, Y ∈ C. Thus, one can obtain

〈m|D|n〉 = e−
XY
2 Xm−n

(
n!

m!

)1
2

Lm−nn (XY) (2)

whereLkm(x) denotes the Laguerre polynomial [7] andm andn are positive integers including
zero.

Using Glauber’s identity [8] one can show that
p∏
i=1

exia
†−yia = eXa

†−YaeZ/2 (3)

where

X =
p∑
i=1

xi (4)

Y =
p∑
i=1

yi (5)

Z =
p∑

i,j=1;i<j
(xiyj − xjyi) (6)

wherexi, yi ∈ C.
Taking the(m, n) matrix element in both sides of equation (3) and assuming thatxi and

yi are real variables and withyi = xi for all i, one can prove the following:
∞∑

mp−1=0

. . .

∞∑
m2=0

∞∑
m1=0

(xp)
m(x1)

−n
(
xp−1

xp

)mp−1
(
xp−2

xp−1

)mp−2

. . .

(
x2

x3

)m2
(
x1

x2

)m1

×Lm−mp−1
mp−1 (x2

p)L
mp−1−mp−2
mp−2 (x2

p−1) . . . L
m2−m1
m1

(x2
2)L

m1−n
n (x2

1)

= exp

[∑p

i=1 x
2
i − (

∑p

i=1 xi)
2

2

]( p∑
i=1

xi

)m−n
Lm−nn

[( p∑
i=1

xi

)2]
(7)

wherep can be any integer wherep − 1 dictates the number of the summation.m andn are
two non-negative integers. This is reported in [2].

Now we define a nonunitary generalized displacement operator

D(z, α, β) = za†aeαa
†−βa (8)

wherez, α, β ∈ C.
We construct the product operator

P =
p∏
i=1

Di (zi, αi, βi). (9)

Making a transformation

D′n+1 = e−
∑n

i=1 uia
†aDn+1e

∑n
i=1 uia

†a (10)

which means

D′n+1 = eαn(
∏n
i=1 z

−1
i )a

†−βn(
∏n
i=1 zi )a (11)

whereui = ln(zi). Thus, one can writeP as

P =
( p∏
i=1

zi

)a†a p−1∏
n=1

D′n+1D1. (12)
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This can be simplified to

P =
( p∏
i=1

zi

)a†a p∏
i=1

eγia
†−δia (13)

whereγi = αi
∏p

j=i+1 z
−1
j andδi = βi

∏p

j=i+1 zj .
Therefore, we construct the operator identity

p∏
i=1

za
†a
i eαia

†−βia = exp[− 1
2(XY − Z)]

( p∏
i=1

zi

)a†a

eXa
†
e−Ya (14)

whereX =∑p

i=1 γi andY =∑p

i=1 δi . Here we have also defined

Ai = ziαi

αi−1
(15)

wherei = 1 andp are cyclic boundary values, i.e. wheni = 1, i−1= p. Using the definition
Ai , X andY one can write

XY =
p∑
j=1

αjβj +
p−1∑
l=1

αl+1βl+1∏l+1
j=1Aj

l∑
i=1

i∏
k=1

Ak +
p−1∑
l=1

αlβl∏l
j=1Aj

p∑
i=l+1

i∏
k=1

Ak (16)

and

Z =
p−1∑
l=1

αl+1βl+1∏l+1
j=1Aj

l∑
i=1

i∏
k=1

Ak −
p−1∑
l=1

αlβl∏l
j=1Aj

p∑
i=l+1

i∏
k=1

Ak. (17)

Now, the first class of identities can be constructed by taking the matrix element of both
sides of equation (14) in a particular basis. If we choose the occupation number basis{|n〉},
then one obtains
∞∑
k1=0

. . .

∞∑
k2=0

∞∑
kp−1=0

Am1A
k1
2 A

k2
3 . . . A

kp−1
p

×Lm−k1
k1

(α1β1)L
k1−k2
k2

(α2β2) . . . L
kp−2−kp−1

kp−1
(αp−1βp−1)L

kp−1−n
n (αpβp)

=
( p∏
i=1

Ai

)n( p∑
i=1

i∏
k=1

Ak

)m−n
exp

[
−

p−1∑
l=1

αlβl∏l
j=1Aj

p∑
i=l+1

i∏
k=1

Ak

]

×Lm−nn

[ p∑
j=1

αjβj +
p−1∑
l=1

αl+1βl+1∏l+1
j=1Aj

l∑
i=1

i∏
k=1

Ak +
p−1∑
l=1

αlβl∏l
j=1Aj

p∑
i=l+1

i∏
k=1

Ak

]
.

(18)

Using the transformation in equation (15) one can write the following equivalent relation:
∞∑
k1=0

. . .

∞∑
k2=0

∞∑
kp−1=0

A
k1
2 A

k2
3 . . . A

kp−1
p L

m−k1
k1

(χ1)L
k1−k2
k2

(χ2) . . . L
kp−2−kp−1

kp−1
(χp−1)L

kp−1−n
n (χp)

= A
n
p

Am1

( p∑
i=1

Ai
)m−n

exp

[
−

p−1∑
l=1

χl

Al

p∑
i=l+1

Ai
]

×Lm−nn

[ p∑
j=1

χj +
p−1∑
l=1

χl+1

Al+1

l∑
i=1

Ai +
p−1∑
l=1

χl

Al

p∑
i=l+1

Ai
]

(19)

whereAj =
∏j

i=1Ai andχi are symbolized forαiβi . In the last relationAi andχi are
independent and, in general, complex. Some special cases are worthy of presentation:
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(i) for p = 2,
∞∑
k1=0

A
k1
2 L

m−k1
k1

(χ1)L
k1−n
n (χ2) = Am2

(
1 +A2

A2

)m−n
e−χ1A2Lm−nn

[
χ1 + χ2 + χ1A2 +

χ2

A2

]
(20a)

(ii) for p = 3,
∞∑
k1=0

∞∑
k2=0

A
k1
2 A

k2
3 L

m−k1
k1

(χ1)L
k1−k2
k2

(χ2)L
k2−n
n (χ3)

= (A2A3)
m

(
1 +A2 +A2A3

A2A3

)m−n
e−(χ1(A2+A2A3)+χ2A3)

×Lm−nn

[
(χ1 + χ2 + χ3) + χ1(A2 +A2A3) + χ2A3 +

(
χ2

A2
+ χ3

1 +A2

A2A3

)]
.

(20b)

Another class of identities is obtained if we take the trace of equation (14). In this case,
by using the following standard relation of the generating function of Laguerre polynomials
[7]:

∞∑
n=0

znLn(x) = 1

1− z exp

[
− xz

1− z
]

(21)

the trace of the right-hand side (rhs) of equation (14) becomes

rhs= e−
(XY−Z)

2
1

1−∏p

i=1Ai
exp

[
−
∏p

i=1AiXY
1−∏p

i=1Ai

]
. (22)

Thus, we arrive at
∞∑
m=0

∞∑
k1=0

. . .

∞∑
kp−1=0

Am1A
k1
2 . . . A

kp−2

p−1A
kp−1
p L

m−k1
k1

(χ1)L
k1−k2
k2

(χ2) . . . L
kp−2−kp−1

kp−1
(χp−1)L

kp−1−m
m (χp)

= 1

1−Ap exp

[
− Ap

1−Ap

{ p∑
i=1

χi +
p−1∑
l=1

χl+1

Al+1

l∑
i=1

Ai +
1

Ap

p−1∑
l=1

χl

Al

p∑
i=l+1

Ai
}]
.

(23)

HereAi andχi are independent complex numbers. The convergence can be shown to be
guaranteed if|Ai | < 1 for all i. Some special cases are given by:

(i) for p = 2,
∞∑
m=0

∞∑
k1=0

Am1A
k1
2 L

m−k1
k1

(χ1)L
k1−m
m (χ2)

= 1

1− A1A2
exp

[
− (χ1 + χ2)A1A2 + χ2A1 + χ1A2

1− A1A2

]
(24a)

(ii) for p = 3,
∞∑
m=0

∞∑
k1=0

∞∑
k2=0

Am1A
k1
2 A

k2
3 L

m−k1
k1

(χ1)L
k1−k2
k2

(χ2)L
k2−m
m (χ3)

= 1

1− A1A2A3
exp{−[(χ1 + χ2 + χ3)A1A2A3

+(χ1A2A3 + χ2A3A1 + χ3A1A2) + (χ1A2 + χ2A3 + χ3A1)]

×[1− A1A2A3]−1}. (24b)
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Thus, equations (19) and (23) are the central result of this part of the work. The result
reported in (9) can be shown as the special cases of equations (24a) and (24b) whereχi is real
andχi = χj for all i andj . Whenχi is, in general, complex it can be shown to be useful in
the construction of the quantum theory of dissipation which will be shown elsewhere.

Next we calculate the thermal average bandshape function for the ultrashort laser
absorption of a molecule. For femtosecond time-resolved absortion spectroscopy [3], we
consider the Born–Oppenheimer adiabatic approximation. The wavefunction of the molecule
9av can be written as a product of the electronic wavefunctionφa and the nuclear wavefunction
θav, i.e.,

9av = φaθav. (25)

In a pump–probe absorption measurement, we assume the pump laser excites the system
to the vibronic manifoldav and the probing laser excites the system from the vibronic manifold
{av} to the{bu} vibronic manifold.

For a randomly oriented system the absorption part of the susceptibility, using linear
response theory, can be expressed as

Q = 2π

3h̄
ω|E(ω)|2|µab|2

∞∑
v=0

(ρ̂e)av,avαav,av(ω) (26)

where(ρ̂e) represents the Boltzmann distribution.E(ω) is the applied laser field,µab is the
electronic-transition dipole moment and

αav,av = 1

2π

∑
u

|〈θav|θbu〉|2[J (ω + ω′av,bu) + J (−ω + ω′av,bu)]. (27)

HereJ (ω) corresponds to the Lorentzian lineshapes for the transition from one vibrational
state to another. If the broadening from sources other than the probing laser pulse width(Tl)

is dominant, which is also true for a very short pulse laser, then

αav,av = 1

π

∑
u

|〈θav|θbu〉|2
2
Tl

( 2
Tl
)2 + (ω − ωbu,av)2

(28)

where|〈θav|θbu〉|2 represents the Franck–Condon factor and the lineshape function takes the
Lorentzian form.

However, the above situation is not valid when the lower electronic state is not in thermal
equilibrium and in that case conventional linear response theory is not applicable. But this is
the simplest possible situation where one can find a tangible analytical result.

Now, the quantity of interest is the thermal average bandshape functionαa→b(ω):

αa→b(ω) =
∞∑
v=0

Pavαav,av (29)

where

Pav = e−
vh̄ω0
kT

1− e
h̄ω0
kT

(30)

with the adiabatic potential surface of the electronic statea is harmonic. Thusαa→b(ω) can
be written as

αa→b(ω) = 1

2π

∫ ∞
−∞

dt
∑
u

∑
v

eit (ω−ωbu,av)e−
2
Tl
|t |
Pav〈θav|θbu〉〈θbu|θav〉. (31)
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For a single-mode displaced-oscillator model the Hamiltonians for the electronic statesa

andb are given as

Ha = P 2

2M
+

1

2
Mω2

0R
2 (32a)

Hb = (Eb − Ea) +
P 2

2M
+

1

2
Mω2

0(R − R0)
2. (32b)

HereR0 is the displacement of stateb from a.
One can show that

D(R0)RD
†(R0) = R − R0 (33)

where

D(R0) = e−
i
h̄
R0P . (34)

Therefore, it is easy to convince oneself that

|θbv〉 = D(R0)|θav〉 (35)

and

〈θbu|θav〉 = 〈θau|D†(R0)|θav〉 = e−
x2

2

(
v!

u!

)1
2

xu−vLu−vv (x2) (36)

where

x =
√(

Mω0

2h̄

)
R0. (37)

Thus, one arrives at

αa→b(ω) = 1

2π

∫ ∞
−∞

dt eit (ω− Eb−Ea
h̄

)e−
2
Tl
|t |

×e−x
2
∞∑
u=0

∞∑
v=0

(−1)v−ue(v−u)itω0
e−

vh̄ω0
kT

(1− e−
h̄ω0
kT )−1

Lu−vv (x2)Lv−uu (x2). (38)

Using equation (24a) this can be rewritten as

αa→b(ω) = 1

2π

∫ ∞
−∞

dt eit (ω−ωe)− 2
Tl
|t | exp

[
−x2 1 + e−

h̄ω0
kT − (eitω0− h̄ω0

kT + e−itω0)

(1− e−
h̄ω0
kT )

]
(39)

whereωc = (Eb − Ea)/h̄.
Finally, one obtains

αa→b(ω) = 1

2π

∫ ∞
−∞

dteit (ω−ωe)− 2
Tl
|t |e−ix2 sin(tω0) exp

[
−2x2 sin2

(
tω0

2

)
coth

(
h̄ω0

2kT

)]
. (40)

Thus, when the excited electronic stateb is coupled with the statea which is in thermal
equilibrium, an additional time-dependent damping term appears along with a time-dependent
frequency shift term. The frequency shift term is temperature independent. From the above
expression one should be able to derive the temperature-dependent bandshape function.

For a dense medium the effect of laser linewidth is very small compared with the above
damping effect. If we neglect this term and calculate the integral with the steepest descent
method we will be able to obtain an expression of the bandshape function which is amenable
to classical interpretation.

To calculate the time integral we assume the short-time approximation

sin(tω0) = tω0. (41)
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If

fab(t) = it (ω − ωe)− ix2ω0t − x2ω2
0
t2

2
C (42)

where

C = coth

(
h̄ω0

2kT

)
(43)

therefore,

f ′ab(t) = i(ω − ωe)− ix2ω0 − x2ω2
0tC (44)

and

f ′′ab(t) = −x2ω2
0C. (45)

Now, for f ′ab(t
∗) = 0 one obtains

t∗ = i(ω − ωe)− ix2ω0

x2ω2
0C

(46)

and writing

fab(t) = fab(t∗) + 1
2f
′′
ab(t
∗)(t − t∗)2 (47)

one obtains

fab(t
∗) = {i(ω − ωe)− ix2ω0}2

2x2ω2
0C

. (48)

Thus, the bandshape can be written as

αa→b = exp[fab(t∗)]

[−2πf ′′ab(t∗)]
1
2

. (49)

Inserting the values ofx andC the final expression can be obtained as

αa→b = 1

[π Mω3
0

h̄
R2

0 coth( h̄ω0
2kT )]

1
2

exp

− [(ω − ωe)− Mω2
0

2h̄ R
2
0]2

Mω3
0

h̄
R2

0 coth( h̄ω0
2kT )

 (50)

which means that in this case the bandshape is Gaussian. The finite-temperature effect can be
easily obtained from the above expression. The dependence of the displacement of the excited
potential surface from the ground state simply comes as displaced wavefunction like. The
displacement not only shifts the absorption band but also affects the width and intensity of the
bandshape function.

The generating functions developed in this work are shown to be useful in physical and
chemical problems involving displaced oscillators. Through the process we have introduced
some interesting relations of the nonunitary generalized displacement operators which can
be used to describe equilibrium and nonequilibrium quantum open systems. Here a thermal
equilibrium property of a quantum system, namely a model molecular system, is investigated.
An exact quantum dissipation theory can be constructed by using these generating functions
which will be reported elsewhere.

The author is grateful to Professor K Bhattacharyya, Burdwan University, for his interest in
this work.
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